# Couplings of reflecting Brownian motions and applications 

Mihai N. Pascu<br>Transilvania University of Braşov, Romania

August 26, 2010

10éme Colloque Franco-Roumain de Mathèmatiques Appliquèes
26-31 August 2010, Poitiers, France

## Abstract

The method of coupling of reflecting Brownian motion is a useful technique for proving results on various functionals associated to the reflecting Brownian motion.

## Abstract

The method of coupling of reflecting Brownian motion is a useful technique for proving results on various functionals associated to the reflecting Brownian motion.

In this talk, we will present two such couplings of reflecting Brownian motions: the scaling coupling and the mirror coupling of reflecting Brownian motions.

## Abstract

The method of coupling of reflecting Brownian motion is a useful technique for proving results on various functionals associated to the reflecting Brownian motion.

In this talk, we will present two such couplings of reflecting Brownian motions: the scaling coupling and the mirror coupling of reflecting Brownian motions.

As an application of the scaling coupling, we will prove a monotonicity of the lifetime of reflecting Brownian motion with killing, which implies the validity of the Hot Spots conjecture of J. Rauch for a certain class of domains.

## Abstract

The method of coupling of reflecting Brownian motion is a useful technique for proving results on various functionals associated to the reflecting Brownian motion.

In this talk, we will present two such couplings of reflecting Brownian motions: the scaling coupling and the mirror coupling of reflecting Brownian motions.

As an application of the scaling coupling, we will prove a monotonicity of the lifetime of reflecting Brownian motion with killing, which implies the validity of the Hot Spots conjecture of J. Rauch for a certain class of domains.

As applications of the mirror coupling, we will present a proof of the Laugesen-Morpurgo conjecture on the radial monotonicity of the diagonal of the Neumann heat kernel of the unit ball in $\mathbb{R}^{n}$, and a unifying proof of the results of I. Chavel and W. Kendall on Chavel's conjecture on the domain monotonicity of the Neumann heat kernel.

## Introduction

The coupling technique was introduced by Doeblin ([5], 1938), in order to prove the strong ergodicity of a Markov chain with a finite state space.

## Introduction

The coupling technique was introduced by Doeblin ([5], 1938), in order to prove the strong ergodicity of a Markov chain with a finite state space.

The method did not get much attention until 1970's, when it became one of the most powerful technique in the developing theory of interacting particle systems. Nowadays, the coupling method is a standard tool for probabilists, and it appears in standard graduate and undergraduate textbooks.

## Introduction

The coupling technique was introduced by Doeblin ([5], 1938), in order to prove the strong ergodicity of a Markov chain with a finite state space.

The method did not get much attention until 1970's, when it became one of the most powerful technique in the developing theory of interacting particle systems. Nowadays, the coupling method is a standard tool for probabilists, and it appears in standard graduate and undergraduate textbooks.

Aside from probability, the coupling method has applications in the study of Markov chains, renewal theory, diffusions, PDE, aso.

## Introduction

The coupling technique was introduced by Doeblin ([5], 1938), in order to prove the strong ergodicity of a Markov chain with a finite state space.

The method did not get much attention until 1970's, when it became one of the most powerful technique in the developing theory of interacting particle systems. Nowadays, the coupling method is a standard tool for probabilists, and it appears in standard graduate and undergraduate textbooks.

Aside from probability, the coupling method has applications in the study of Markov chains, renewal theory, diffusions, PDE, aso.

In general, a coupling is a construction of two processes $X$ and $Y$ on the same (or different) probability space $\Omega$, such that they are dependent in some useful way.

## Introduction

The coupling technique was introduced by Doeblin ([5], 1938), in order to prove the strong ergodicity of a Markov chain with a finite state space.

The method did not get much attention until 1970's, when it became one of the most powerful technique in the developing theory of interacting particle systems. Nowadays, the coupling method is a standard tool for probabilists, and it appears in standard graduate and undergraduate textbooks.

Aside from probability, the coupling method has applications in the study of Markov chains, renewal theory, diffusions, PDE, aso.

In general, a coupling is a construction of two processes $X$ and $Y$ on the same (or different) probability space $\Omega$, such that they are dependent in some useful way.

In the present talk we will restrict the attention to couplings of stochastic processes, more precisely to the case of (reflecting or killed) Brownian motions.

## Preliminaries

## Definition (Brownian motion)

A 1-dimensional Brownian motion starting at $x \in \mathbb{R}$ is a continuous stochastic process $\left(B_{t}\right)_{t \geq 0}$ with $B_{0}=x$ a.s for which $B_{t}-B_{s}$ is a normal random variable $\mathcal{N}(0, t-s)$, independent of the $\sigma$-algebra $\mathcal{F}_{s}=\sigma\left(B_{r}: r \leq s\right)$, for all $0 \leq s<t$.

## Preliminaries

## Definition (Brownian motion)

A 1-dimensional Brownian motion starting at $x \in \mathbb{R}$ is a continuous stochastic process $\left(B_{t}\right)_{t \geq 0}$ with $B_{0}=x$ a.s for which $B_{t}-B_{s}$ is a normal random variable $\mathcal{N}(0, t-s)$, independent of the $\sigma$-algebra $\mathcal{F}_{s}=\sigma\left(B_{r}: r \leq s\right)$, for all $0 \leq s<t$.
If $B_{t}^{i}$ are independent 1-dimensional Brownian motions starting at $x^{i}, 1 \leq i \leq d$, then $B_{t}=\left(B_{t}^{1}, \ldots, B_{t}^{d}\right)$ is a $d$-dimensional Brownian motion starting at $x=\left(x^{1}, \ldots, x^{d}\right) \in \mathbb{R}^{d}$.

## Preliminaries

## Definition (Brownian motion)

A 1-dimensional Brownian motion starting at $x \in \mathbb{R}$ is a continuous stochastic process $\left(B_{t}\right)_{t \geq 0}$ with $B_{0}=x$ a.s for which $B_{t}-B_{s}$ is a normal random variable $\mathcal{N}(0, t-s)$, independent of the $\sigma$-algebra $\mathcal{F}_{s}=\sigma\left(B_{r}: r \leq s\right)$, for all $0 \leq s<t$.
If $B_{t}^{i}$ are independent 1-dimensional Brownian motions starting at $x^{i}, 1 \leq i \leq d$, then $B_{t}=\left(B_{t}^{1}, \ldots, B_{t}^{d}\right)$ is a $d$-dimensional Brownian motion starting at $x=\left(x^{1}, \ldots, x^{d}\right) \in \mathbb{R}^{d}$.

## Definition (Reflecting Brownian motion)

Reflecting Brownian motion in a smooth domain $D \subset \mathbb{R}^{d}$ starting at $x_{0} \in \bar{D}$ is a solution of the stochastic differential equation

$$
\begin{equation*}
X_{t}=x_{0}+B_{t}+\int_{0}^{t} \nu_{D}\left(X_{s}\right) d L_{s}^{X}, \quad t \geq 0 \tag{1}
\end{equation*}
$$

where $B_{t}$ is a $d$-dimensional Brownian motion starting at $B_{0}=0$ on $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{t \geq 0}, P\right), \nu_{D}$ is the inward unit vector field on $\partial D, L_{t}^{X}$ is the local time of $X$ on the boundary of $D, X_{t}$ is $\mathcal{F}_{t}$-adapted and almost surely $X_{t} \in \bar{D}$ for all $t \geq 0$.

## Preliminaries

## Definition (Reflecting Brownian motion with killing)

If $X_{t}$ is a reflecting Brownian motion in a smooth domain $D \subset \mathbb{R}^{d}$ starting at $x_{0} \in \bar{D}, S \subset \partial D$ and $\tau=\tau_{S}=\inf \left\{t>0: X_{t} \in S\right\}$ is the hitting time of $S$, then

$$
Y_{t}= \begin{cases}X_{t}, & t<\tau  \tag{2}\\ \dagger, & t \geq \tau\end{cases}
$$

is a reflecting Brownian motion in $D$ killed on hitting $S \subset \partial D$
( $\dagger \notin D$ is the cemetery state and $\tau$ is the killing time).

## Preliminaries

## Definition (Reflecting Brownian motion with killing)

If $X_{t}$ is a reflecting Brownian motion in a smooth domain $D \subset \mathbb{R}^{d}$ starting at $x_{0} \in \bar{D}, S \subset \partial D$ and $\tau=\tau_{S}=\inf \left\{t>0: X_{t} \in S\right\}$ is the hitting time of $S$, then

$$
Y_{t}= \begin{cases}X_{t}, & t<\tau  \tag{2}\\ \dagger, & t \geq \tau\end{cases}
$$

is a reflecting Brownian motion in $D$ killed on hitting $S \subset \partial D$
( $\dagger \notin D$ is the cemetery state and $\tau$ is the killing time).

## Proposition (Invariance properties of Brownian motion)

Brownian motion is invariant under is translation, rotation and symmetry. It is also (almost) invariant under scaling and composition with conformal maps.

## Preliminaries

## Definition (Reflecting Brownian motion with killing)

If $X_{t}$ is a reflecting Brownian motion in a smooth domain $D \subset \mathbb{R}^{d}$ starting at $x_{0} \in \bar{D}, S \subset \partial D$ and $\tau=\tau_{S}=\inf \left\{t>0: X_{t} \in S\right\}$ is the hitting time of $S$, then

$$
Y_{t}= \begin{cases}X_{t}, & t<\tau  \tag{2}\\ \dagger, & t \geq \tau\end{cases}
$$

is a reflecting Brownian motion in $D$ killed on hitting $S \subset \partial D$ ( $\dagger \notin D$ is the cemetery state and $\tau$ is the killing time).

## Proposition (Invariance properties of Brownian motion)

Brownian motion is invariant under is translation, rotation and symmetry. It is also (almost) invariant under scaling and composition with conformal maps.

This gives rise to the following couplings of Brownian motions:


Figure: Translation coupling


Figure: Translation coupling


Figure: Rotation coupling


Figure: Translation coupling

Figure: Mirror coupling



Figure: Rotation coupling


Figure: Translation coupling


Figure: Mirror coupling


Figure: Rotation coupling


Figure: Scaling coupling

## Scaling coupling and applications

Key of the construction: if $B_{t}$ is a $d$-dimensional Brownian motion, then

$$
\frac{1}{\sup _{s \leq t}\left\|B_{s}\right\|} B_{t}
$$

is a time changed reflecting Brownian motion in the unit ball $\mathbb{U} \subset \mathbb{R}^{n}$.

## Scaling coupling and applications

Key of the construction: if $B_{t}$ is a $d$-dimensional Brownian motion, then

$$
\frac{1}{\sup _{s \leq t}\left\|B_{s}\right\|} B_{t}
$$

is a time changed reflecting Brownian motion in the unit ball $\mathbb{U} \subset \mathbb{R}^{n}$.

## Theorem ([1])

Let $X_{t}$ be a reflecting Brownian motion in $\mathbb{U}$ starting at $X_{0}=x_{0} \in \overline{\mathbb{U}}-\{0\}$ and $a \in\left[\left\|x_{0}\right\|, 1\right]$. The process $Y_{t}$ defined by:

$$
\begin{equation*}
Y_{t}=\frac{1}{M_{\alpha_{t}}} X_{\alpha_{t}}, \quad t \geq 0 \tag{3}
\end{equation*}
$$

where $M_{t}=a \vee \sup _{s \leq t}\left\|X_{s}\right\|$ and $\alpha_{t}^{-1}=A_{t}=\int_{0}^{t} \frac{1}{M_{s}^{2}} d s$, is a $\mathcal{F}_{\alpha_{t}}^{X}$-adapted reflecting Brownian motion in $\mathbb{U}$ starting at $Y_{0}=\frac{1}{a} x_{0}$.

## Scaling coupling and applications

Key of the construction: if $B_{t}$ is a $d$-dimensional Brownian motion, then

$$
\frac{1}{\sup _{s \leq t}\left\|B_{s}\right\|} B_{t}
$$

is a time changed reflecting Brownian motion in the unit ball $\mathbb{U} \subset \mathbb{R}^{n}$.

## Theorem ([1])

Let $X_{t}$ be a reflecting Brownian motion in $\mathbb{U}$ starting at $X_{0}=x_{0} \in \overline{\mathbb{U}}-\{0\}$ and $a \in\left[\left\|x_{0}\right\|, 1\right]$. The process $Y_{t}$ defined by:

$$
\begin{equation*}
Y_{t}=\frac{1}{M_{\alpha_{t}}} X_{\alpha_{t}}, \quad t \geq 0 \tag{3}
\end{equation*}
$$

where $M_{t}=a \vee \sup _{s \leq t}\left\|X_{s}\right\|$ and $\alpha_{t}^{-1}=A_{t}=\int_{0}^{t} \frac{1}{M_{s}^{2}} d s$, is a $\mathcal{F}_{\alpha_{t}}^{X}$-adapted reflecting Brownian motion in $\mathbb{U}$ starting at $Y_{0}=\frac{1}{a} x_{0}$.

## Definition

The pair $X_{t}, Y_{t}$ constructed above is called a scaling coupling of reflecting Brownian motions in $\mathbb{U}$ starting at $x_{0} \in \overline{\mathbb{U}}-\{0\}$, respectively $y_{0}=\frac{1}{a} x_{0} \in \overline{\mathbb{U}}$.

## Monotonicity of lifetime of the killed RBM in $\mathbb{U}$



Figure: Mirror coupling of reflecting Brownian motions in the unit ball $\mathbb{U}$.

## Monotonicity of lifetime of the killed RBM in $\mathbb{U}$



Figure: Mirror coupling of reflecting Brownian motions in the unit ball $\mathbb{U}$.
$M_{t}=a \vee \sup _{s \leq t}\left\|X_{s}\right\| \leq 1$

## Monotonicity of lifetime of the killed RBM in $\mathbb{U}$



Figure: Mirror coupling of reflecting Brownian motions in the unit ball $\mathbb{U}$.
$M_{t}=a \vee \sup _{s \leq t}\left\|X_{s}\right\| \leq 1 \Longrightarrow A_{t}=\int_{0}^{t} \frac{1}{M_{s}^{2}} d s \geq t$

## Monotonicity of lifetime of the killed RBM in $\mathbb{U}$



Figure: Mirror coupling of reflecting Brownian motions in the unit ball $\mathbb{U}$.
$M_{t}=a \vee \sup _{s \leq t}\left\|X_{s}\right\| \leq 1 \Longrightarrow A_{t}=\int_{0}^{t} \frac{1}{M_{s}^{2}} d s \geq t \Longrightarrow \alpha_{t}=A_{t}^{-1} \leq t$

## Monotonicity of lifetime of the killed RBM in $\mathbb{U}$



Figure: Mirror coupling of reflecting Brownian motions in the unit ball $\mathbb{U}$.
$M_{t}=a \vee \sup _{s \leq t}\left\|X_{s}\right\| \leq 1 \Longrightarrow A_{t}=\int_{0}^{t} \frac{1}{M_{s}^{2}} d s \geq t \Longrightarrow \alpha_{t}=A_{t}^{-1} \leq t \Longrightarrow \tau^{X}=\alpha_{\tau^{\gamma}} \leq \tau^{Y}$
( $\tau^{X}, \tau^{Y}$ denotes the lifetime of $X_{t}, Y_{t}$ killed on a hyperplane through origin).

## Scaling coupling and applications

## Corollary

For any $t>0, P\left(\tau^{x}>t\right)$ is a radially increasing function
( $\tau^{x}$ is the lifetime of RBM in $\mathbb{U}$ starting at $x$, killed on a hyperplane through origin).

## Scaling coupling and applications

## Corollary

For any $t>0, P\left(\tau^{x}>t\right)$ is a radially increasing function
( $\tau^{x}$ is the lifetime of RBM in $\mathbb{U}$ starting at $x$, killed on a hyperplane through origin).
Using the asymptotics $P\left(\tau^{x}>t\right) \approx e^{-\lambda_{1} t} \psi_{1}^{2}(x)=e^{-\mu_{2} t} \varphi_{2}^{2}(x)$, we obtain:

## Theorem

If $\varphi$ is a second Neumann eigenfunction of the Laplacian on $\mathbb{U}$ which is antisymmetric with respect to a hyperplane through the origin, then $\varphi$ is a radially monotone function. In particular, the maximum and the minimum of $\varphi$ over $\overline{\mathbb{U}}$ are attained only at the boundary of $U$, that is the Hot Spots conjecture holds for $\varphi$.

## Scaling coupling and applications

## Corollary

For any $t>0, P\left(\tau^{x}>t\right)$ is a radially increasing function
( $\tau^{x}$ is the lifetime of RBM in $\mathbb{U}$ starting at $x$, killed on a hyperplane through origin).
Using the asymptotics $P\left(\tau^{x}>t\right) \approx e^{-\lambda_{1} t} \psi_{1}^{2}(x)=e^{-\mu_{2} t} \varphi_{2}^{2}(x)$, we obtain:

## Theorem

If $\varphi$ is a second Neumann eigenfunction of the Laplacian on $\mathbb{U}$ which is antisymmetric with respect to a hyperplane through the origin, then $\varphi$ is a radially monotone function. In particular, the maximum and the minimum of $\varphi$ over $\overline{\mathbb{U}}$ are attained only at the boundary of $U$, that is the Hot Spots conjecture holds for $\varphi$.

## Corollary

The Hot Spots conjecture holds for the unit ball $\mathbb{U} \subset \mathbb{R}^{n}$, that is

$$
\min _{\partial \mathbb{U}} \varphi=\min _{\overline{\mathbb{U}}} \varphi<\max _{\overline{\mathbb{U}}} \varphi=\max _{\partial \mathbb{U}} \varphi,
$$

for any second Neumann eigenfunction $\varphi$ of $\mathbb{U}$.

## An application to the Hots Spots conjecture

The above result is known (Kawohl, [6]).

## An application to the Hots Spots conjecture

The above result is known (Kawohl, [6]).

Using conformal invariance of Brownian motion and the geometric characterization of a convex map, the same arguments can be applied to any smooth bounded domain $D \subset \mathbb{R}^{2}$ in order to obtain the following:

## An application to the Hots Spots conjecture

The above result is known (Kawohl, [6]).

Using conformal invariance of Brownian motion and the geometric characterization of a convex map, the same arguments can be applied to any smooth bounded domain $D \subset \mathbb{R}^{2}$ in order to obtain the following:

## Theorem ([1])

If $D \subset \mathbb{R}^{2}$ is a convex $C^{1, \alpha}$ domain $(0<\alpha<1)$, and at least one of the following hypothesis hold,
i) $D$ is symmetric with respect to both coordinate axes;
ii) $D$ is symmetric with respect to the horizontal axis and the diameter to width ratio $d_{D} / l_{D}$ is larger than $\frac{4 j_{0}}{\pi} \approx 3.06$;
then Hot Spots conjecture holds for the domain D.

## Mirror coupling and applications

Mirror coupling was introduced by Kendall ([7]), and developed by Burdzy et. al ([1], [2], [3]).

## Mirror coupling and applications

Mirror coupling was introduced by Kendall ([7]), and developed by Burdzy et. al ([1], [2], [3]). For a smooth domain $D \subset R^{d}$ and a BM $B_{t}$, they considered the following system of SDE:

$$
\begin{align*}
X_{t} & =x+B_{t}+\int_{0}^{t} \nu_{D}\left(X_{s}\right) d L_{s}^{X}  \tag{4}\\
Y_{t} & =y+Z_{t}+\int_{0}^{t} \nu_{D}\left(X_{s}\right) d L_{s}^{Y}  \tag{5}\\
Z_{t} & =B_{t}-2 \int_{0}^{t} \frac{X_{s}-Y_{s}}{\left\|X_{s}-Y_{s}\right\|^{2}}\left(X_{s}-Y_{s}\right) \cdot d B_{s} \tag{6}
\end{align*}
$$

and proved pathwise uniqueness and strong uniqueness for $t<\tau=\inf \left\{s>0: X_{s}=Y_{s}\right\}$.

## Mirror coupling and applications

Mirror coupling was introduced by Kendall ([7]), and developed by Burdzy et. al ([1], [2], [3]). For a smooth domain $D \subset R^{d}$ and a BM $B_{t}$, they considered the following system of SDE:

$$
\begin{align*}
X_{t} & =x+B_{t}+\int_{0}^{t} \nu_{D}\left(X_{s}\right) d L_{s}^{X}  \tag{4}\\
Y_{t} & =y+Z_{t}+\int_{0}^{t} \nu_{D}\left(X_{s}\right) d L_{s}^{Y}  \tag{5}\\
Z_{t} & =B_{t}-2 \int_{0}^{t} \frac{X_{s}-Y_{s}}{\left\|X_{s}-Y_{s}\right\|^{2}}\left(X_{s}-Y_{s}\right) \cdot d B_{s} \tag{6}
\end{align*}
$$

and proved pathwise uniqueness and strong uniqueness for $t<\tau=\inf \left\{s>0: X_{s}=Y_{s}\right\}$. We let $X_{t}=Y_{t}$ for $t \geq \tau$, and refer to $X_{t}, Y_{t}$ as a mirror coupling in $D$ starting at $x, y \in \bar{D}$.

## Mirror coupling and applications

Mirror coupling was introduced by Kendall ([7]), and developed by Burdzy et. al ([1], [2], [3]). For a smooth domain $D \subset R^{d}$ and a BM $B_{t}$, they considered the following system of SDE:

$$
\begin{align*}
X_{t} & =x+B_{t}+\int_{0}^{t} \nu_{D}\left(X_{s}\right) d L_{s}^{X}  \tag{4}\\
Y_{t} & =y+Z_{t}+\int_{0}^{t} \nu_{D}\left(X_{s}\right) d L_{s}^{Y}  \tag{5}\\
Z_{t} & =B_{t}-2 \int_{0}^{t} \frac{X_{s}-Y_{s}}{\left\|X_{s}-Y_{s}\right\|^{2}}\left(X_{s}-Y_{s}\right) \cdot d B_{s} \tag{6}
\end{align*}
$$

and proved pathwise uniqueness and strong uniqueness for $t<\tau=\inf \left\{s>0: X_{s}=Y_{s}\right\}$.
We let $X_{t}=Y_{t}$ for $t \geq \tau$, and refer to $X_{t}, Y_{t}$ as a mirror coupling in $D$ starting at $x, y \in \bar{D}$.

## Remark

$G(u) v=v-2(u \cdot v) u$ is the mirror image of $v$ wrt hyperplane through 0 perpendicular to $u$.

$$
(6) \Longleftrightarrow d Z_{t}=G\left(\frac{X_{t}-Y_{t}}{\left\|X_{t}-Y_{t}\right\|}\right) d W_{t}
$$

(the increments of $Z_{t}$ and $B_{t}$ are mirror images wrt hyperplane of symmetry $\mathcal{M}_{t}$ of $X_{t}$ and $Y_{t}$ ).

## Lemma ("Mirror $\mathcal{M}_{t}$ moves towards origin", [3])

Let $X_{t}, Y_{t}$ be a mirror coupling of $R B M$ in $\mathbb{U}$ starting at $x, y \in \mathbb{U}$, and let

$$
\tau=\inf \left\{t>0: X_{t}=Y_{t}\right\} \text { and } \tau_{1}=\inf \left\{t>0: 0 \in \mathcal{M}_{t}\right\} .
$$

For all times $t<\tau \wedge \tau_{1}$, the mirror $\mathcal{M}_{t}$ moves towards the origin, in such a way that if a point $P \in \mathbb{U}$ and the origin are separated by $\mathcal{M}_{t_{1}}$ for $t_{1} \in\left[0, \tau \wedge \tau_{1}\right)$, then the point $P$ and the origin are separated by $\mathcal{M}_{t_{2}}$ for all $t_{2} \in\left[t_{1}, \tau \wedge \tau_{1}\right)$.


Figure: Mirror coupling of reflecting Brownian motions in the unit disk $(d=2)$.

## Inequalities for the Neumann heat kernel of the unit ball

Let $p_{\mathbb{U}}(t, x, y)$ denote the Neumann heat kernel of the unit ball $\mathbb{U} \subset \mathbb{R}^{d}(d \geq 1)$.

## Inequalities for the Neumann heat kernel of the unit ball

Let $p_{\mathbb{U}}(t, x, y)$ denote the Neumann heat kernel of the unit ball $\mathbb{U} \subset \mathbb{R}^{d}(d \geq 1)$.

## Theorem ([3])

For any points $x, y, z \in \overline{\mathbb{U}}$ such that $\|y\| \leq\|x\|$ and $\|x-z\| \leq\|y-z\|$, and any $t>0$ we have:

$$
\begin{equation*}
p_{U}(t, y, z) \leq p_{U}(t, x, z) . \tag{7}
\end{equation*}
$$

## Inequalities for the Neumann heat kernel of the unit ball

Let $p_{\mathbb{U}}(t, x, y)$ denote the Neumann heat kernel of the unit ball $\mathbb{U} \subset \mathbb{R}^{d}(d \geq 1)$.

## Theorem ([3])

For any points $x, y, z \in \overline{\mathbb{U}}$ such that $\|y\| \leq\|x\|$ and $\|x-z\| \leq\|y-z\|$, and any $t>0$ we have:

$$
\begin{equation*}
p_{\mathbb{U}}(t, y, z) \leq p_{\mathbb{U}}(t, x, z) . \tag{7}
\end{equation*}
$$

## Theorem ([3])

For any $x \in \mathbb{U}-\{0\}, r \in(0, \min \{\|x\|, 1-\|x\|\})$ and $t>0$ we have:

$$
\begin{equation*}
\int_{\partial \mathbb{U}} p_{\mathbb{U}}(t, x+r u, x) d \sigma(u) \leq p_{\mathbb{U}}\left(t, x+r \frac{x}{\|x\|}, x\right) \leq p_{\mathbb{U}}\left(t, x+r \frac{x}{\|x\|}, x+r \frac{x}{\|x\|}\right), \tag{8}
\end{equation*}
$$

where $\sigma$ is the normalized surface measure on $\partial \mathbb{U}$.

## Resolution of the Laugesen-Morpurgo conjecture

## Theorem (Resolution of the Laugesen-Morpurgo conjecture)

For any $t>0, p_{\mathbb{U}}(t, x, x)$ is a strictly increasing radial function in $\mathbb{U}$, that is

$$
\begin{equation*}
p_{\mathbb{U}}(t, x, x)<p_{\mathbb{U}}(t, y, y) \tag{9}
\end{equation*}
$$

for all $x, y \in \overline{\mathbb{U}}$ with $\|x\|<\|y\|$.

## Resolution of the Laugesen-Morpurgo conjecture

## Theorem (Resolution of the Laugesen-Morpurgo conjecture)

For any $t>0, p_{\mathbb{U}}(t, x, x)$ is a strictly increasing radial function in $\mathbb{U}$, that is

$$
\begin{equation*}
p_{\mathbb{U}}(t, x, x)<p_{\mathbb{U}}(t, y, y), \tag{9}
\end{equation*}
$$

for all $x, y \in \overline{\mathbb{U}}$ with $\|x\|<\|y\|$.

## Proof.

$$
\frac{d}{d\|x\|} p_{U}(t, x, x)=\lim _{r \searrow 0} \frac{p_{U}\left(t, x+r \frac{x}{\|x\|}, x+r \frac{x}{\|x\|}\right)-p_{U}(t, x, x)}{r}
$$

## Resolution of the Laugesen-Morpurgo conjecture

## Theorem (Resolution of the Laugesen-Morpurgo conjecture)

For any $t>0, p_{\mathbb{U}}(t, x, x)$ is a strictly increasing radial function in $\mathbb{U}$, that is

$$
\begin{equation*}
p_{\mathbb{U}}(t, x, x)<p_{\mathbb{U}}(t, y, y), \tag{9}
\end{equation*}
$$

for all $x, y \in \overline{\mathbb{U}}$ with $\|x\|<\|y\|$.

## Proof.

$$
\begin{aligned}
\frac{d}{d\|x\|} p_{\mathrm{U}}(t, x, x) & =\lim _{r \searrow 0} \frac{p_{\mathbb{U}}\left(t, x+r \frac{x}{\|x\|}, x+r \frac{x}{\|x\|}\right)-p_{U}(t, x, x)}{r} \\
& \geq \lim _{r \searrow 0} \frac{\int_{\partial \mathbb{U}} p_{\mathbb{U}}(t, x+r u, x) d \sigma(u)-p_{\mathbb{U}}(t, x, x)}{r}
\end{aligned}
$$

## Resolution of the Laugesen-Morpurgo conjecture

## Theorem (Resolution of the Laugesen-Morpurgo conjecture)

For any $t>0, p_{\mathbb{U}}(t, x, x)$ is a strictly increasing radial function in $\mathbb{U}$, that is

$$
\begin{equation*}
p_{\mathbb{U}}(t, x, x)<p_{\mathbb{U}}(t, y, y), \tag{9}
\end{equation*}
$$

for all $x, y \in \overline{\mathbb{U}}$ with $\|x\|<\|y\|$.

## Proof.

$$
\begin{aligned}
& \frac{d}{d\|x\|} p_{\mathbb{U}}(t, x, x)=\lim _{r \searrow 0} \frac{p_{\mathbb{U}}\left(t, x+r \frac{x}{\|x\|}, x+r \frac{x}{\|x\|}\right)-p_{U}(t, x, x)}{r} \\
& \geq \lim _{r \searrow 0} \frac{\int_{\partial \mathbb{U}} p_{\mathbb{U}}(t, x+r u, x) d \sigma(u)-p_{\mathbb{U}}(t, x, x)}{r} \\
&=\int_{\partial \mathbb{U}} r \backslash 0 \\
& \lim _{0} \frac{p_{U}(t, x+r u, x)-p_{U}(t, x, x)}{r} d \sigma(u)
\end{aligned}
$$

## Resolution of the Laugesen-Morpurgo conjecture

## Theorem (Resolution of the Laugesen-Morpurgo conjecture)

For any $t>0, p_{\mathbb{U}}(t, x, x)$ is a strictly increasing radial function in $\mathbb{U}$, that is

$$
\begin{equation*}
p_{\mathbb{U}}(t, x, x)<p_{\mathbb{U}}(t, y, y), \tag{9}
\end{equation*}
$$

for all $x, y \in \overline{\mathbb{U}}$ with $\|x\|<\|y\|$.

## Proof.

$$
\begin{aligned}
\frac{d}{d\|x\|} p_{\mathbb{U}}(t, x, x) & =\lim _{r \searrow 0} \frac{p_{\mathbb{U}}\left(t, x+r \frac{x}{\|x\|}, x+r \frac{x}{\|x\|}\right)-p_{U}(t, x, x)}{r} \\
& \geq \lim _{r \searrow 0} \frac{\int_{\partial \mathbb{U}} p_{\mathbb{U}}(t, x+r u, x) d \sigma(u)-p_{\mathbb{U}}(t, x, x)}{r} \\
& =\int_{\partial \mathbb{U}} r \lim _{r} \frac{p_{U}(t, x+r u, x)-p_{U}(t, x, x)}{r} d \sigma(u) \\
& =\int_{\partial \mathbb{U}} \nabla p_{U}(t, x, x) \cdot u d \sigma(u)
\end{aligned}
$$

## Resolution of the Laugesen-Morpurgo conjecture

## Theorem (Resolution of the Laugesen-Morpurgo conjecture)

For any $t>0, p_{\mathbb{U}}(t, x, x)$ is a strictly increasing radial function in $\mathbb{U}$, that is

$$
\begin{equation*}
p_{\mathbb{U}}(t, x, x)<p_{\mathbb{U}}(t, y, y), \tag{9}
\end{equation*}
$$

for all $x, y \in \overline{\mathbb{U}}$ with $\|x\|<\|y\|$.

## Proof.

$$
\begin{aligned}
\frac{d}{d\|x\|} p_{\mathbb{U}}(t, x, x) & =\lim _{r \searrow 0} \frac{p_{\mathbb{U}}\left(t, x+r \frac{x}{\|x\|}, x+r \frac{x}{\|x\|}\right)-p_{U}(t, x, x)}{r} \\
& \geq \lim _{r \searrow 0} \frac{\int_{\partial \mathbb{U}} p_{U}(t, x+r u, x) d \sigma(u)-p_{\mathbb{U}}(t, x, x)}{r} \\
& =\int_{\partial \mathbb{U}} r \lim _{0} \frac{p_{\mathbb{U}}(t, x+r u, x)-p_{U}(t, x, x)}{r} d \sigma(u) \\
& =\int_{\partial \mathbb{U}} \nabla p_{U}(t, x, x) \cdot u d \sigma(u) \\
& =0 .
\end{aligned}
$$

## Extension of the mirror coupling and applications

Recently ([3]), the author extended the construction of the mirror coupling to the case when the two RBM live in different domains $D_{1}, D_{2} \subset \mathbb{R}^{n}$ such that $D_{1} \cap D_{2}$ is a convex domain and $D_{1,2}$ have non-tangential boundaries.


Figure: Typical domains for the extended mirror coupling.

## A unifying proof of Chavel's conjecture

Conjecture (Chavel's conjecture on domain monotonicity of Neumann heat kernel, 1986)
If $D_{1} \subset D_{2}$ are convex domains then for all $t>0$ and $x, y \in D_{1}$ we have

$$
p_{D_{1}}(t, x, y) \geq p_{D_{2}}(t, x, y) .
$$

## A unifying proof of Chavel's conjecture

Conjecture (Chavel's conjecture on domain monotonicity of Neumann heat kernel, 1986)
If $D_{1} \subset D_{2}$ are convex domains then for all $t>0$ and $x, y \in D_{1}$ we have

$$
p_{D_{1}}(t, x, y) \geq p_{D_{2}}(t, x, y) .
$$

I. Chavel proved the conjecture in the case $D_{2}$ is a ball centered at $x$ (or $y$ ) and $D_{1}$ is convex (integration by parts).

## A unifying proof of Chavel's conjecture

Conjecture (Chavel's conjecture on domain monotonicity of Neumann heat kernel, 1986)
If $D_{1} \subset D_{2}$ are convex domains then for all $t>0$ and $x, y \in D_{1}$ we have

$$
p_{D_{1}}(t, x, y) \geq p_{D_{2}}(t, x, y) .
$$

I. Chavel proved the conjecture in the case $D_{2}$ is a ball centered at $x$ (or $y$ ) and $D_{1}$ is convex (integration by parts).
W. Kendall proved the conjecture in the case when $D_{1}$ is a ball centered at $x$ (or $y$ ) and $D_{2}$ is convex (coupling arguments).

## A unifying proof of Chavel's conjecture

Conjecture (Chavel's conjecture on domain monotonicity of Neumann heat kernel, 1986)
If $D_{1} \subset D_{2}$ are convex domains then for all $t>0$ and $x, y \in D_{1}$ we have

$$
p_{D_{1}}(t, x, y) \geq p_{D_{2}}(t, x, y) .
$$

I. Chavel proved the conjecture in the case $D_{2}$ is a ball centered at $x$ (or $y$ ) and $D_{1}$ is convex (integration by parts).
W. Kendall proved the conjecture in the case when $D_{1}$ is a ball centered at $x$ (or $y$ ) and $D_{2}$ is convex (coupling arguments).
When combined, the above results show the following:

## Theorem

If $D_{1} \subset D_{2}$ are convex domains then for all $t>0$ and $x, y \in D_{1}$ we have

$$
p_{D_{1}}(t, x, y) \geq p_{D_{2}}(t, x, y)
$$

whenever there exists a ball $B$ centered at either $x$ or $y$ such that $D_{1} \subset B \subset D_{2}$.

## Sketch of the proof

Consider a mirror coupling of RBM $X_{t}, Y_{t}$ in $D_{2}, D_{1}$, starting at $X_{0}=Y_{0}=x$.

## Sketch of the proof

Consider a mirror coupling of RBM $X_{t}, Y_{t}$ in $D_{2}, D_{1}$, starting at $X_{0}=Y_{0}=x$. For all times $t>0$, the mirror $\mathcal{M}_{t}$ of the coupling cannot separate the points $Y_{t}$ and $y$.

## Sketch of the proof

Consider a mirror coupling of RBM $X_{t}, Y_{t}$ in $D_{2}, D_{1}$, starting at $X_{0}=Y_{0}=x$.
For all times $t>0$, the mirror $\mathcal{M}_{t}$ of the coupling cannot separate the points $Y_{t}$ and $y$.


## Sketch of the proof

Consider a mirror coupling of RBM $X_{t}, Y_{t}$ in $D_{2}, D_{1}$, starting at $X_{0}=Y_{0}=x$.
For all times $t>0$, the mirror $\mathcal{M}_{t}$ of the coupling cannot separate the points $Y_{t}$ and $y$.


$$
\left\|Y_{t}-y\right\| \leq\left\|X_{t}-y\right\|, \quad t>0
$$

## Sketch of the proof

Consider a mirror coupling of RBM $X_{t}, Y_{t}$ in $D_{2}, D_{1}$, starting at $X_{0}=Y_{0}=x$.
For all times $t>0$, the mirror $\mathcal{M}_{t}$ of the coupling cannot separate the points $Y_{t}$ and $y$.


$$
\left\|Y_{t}-y\right\| \leq\left\|X_{t}-y\right\|, \quad t>0 \quad \Longrightarrow \quad p_{D_{1}}(t, x, y)>p_{D_{2}}(t, x, y) .
$$

## References

R. Atar, K. Burdzy, On Neumann eigenfunctions in lip domains, J. Amer. Math. Soc. 17 (2004) , pp. $243-265$.
R. Atar, K. Burdzy, Mirror couplings and Neumann eigenfunctions, Indiana Univ. Math. J. 57 (2008), No. 3, pp. 1317 - 1351.
K. Burdzy, W. Kendall, Efficient Markovian couplings: Examples and counterexamples, Ann. Appl. Probab. 10 (2000), No. 2, pp. 362 - 409.
I. Chavel, Heat diffusion in insulated convex domains, J. London Math. Soc. (2) 34 (1986), No. 3, pp. $473-478$.
W. Doeblin, Expose de la Theorie des Chaines simples constantes de Markoff aun nombre fini d'Etats, Rev. Math. de l'Union Interbalkanique 2 (1938), pp. 77 - 105.
B. Kawohl, Rearrangements and convexity of level sets in PDE, Lecture Notes in Mathematics, Vol. 1150, Springer-Verlag, 1985.
W. S. Kendall, Nonnegative Ricci curvature and the Brownian coupling property, Stochastics 19 (1986), No. 1-2, pp. 111 - 129.
W. S. Kendall, Coupled Brownian motions and partial domain monotonicity for the Neumann heat kernel, J. Funct. Anal. 86 (1989), No. 2, pp. 226 - 236.

## References

M. N. Pascu, Scaling coupling of reflecting Brownian motions and the hot spots problem, Trans. Amer. Math. Soc. 354 (2002), No. 11, pp. 4681 - 4702.
M. N. Pascu, Monotonicity properties of Neumann heat kernel in the ball, to appear in JFA (http://arxiv.org/abs/0807.4726).
M. N. Pascu, Mirror coupling of reflecting Brownian motion and an application to Chavel's conjecture, to appear (http://arxiv.org/abs/1004.2398)

